Artificial intelligence is turning brain signals into speech

Artificial intelligence is turning brain signals into speech

Scientists can now read your mind: sort of.

Researchers from the University of California claim to have created a device that turns brain signals into electronic speech. The “brain machine interface” is a neural decoder that maps cortical activity into movements of the vocal tract, with one participant of the study being asked to read sentences aloud, before miming the same sentences with their mouth without producing sound. The researchers described the results as “encouraging”.

Five volunteers had electrodes implanted on the surface of their brains as part of epilepsy treatment. The researchers recorded the brain activity of the study participants reading sentences, before combining these recordings with data on sound creation and how the tongue, lips, jaw and larynx help us speak.

What is Deep Learning?

A deep-learning algorithm was used on the data collected on vocal tract movement and the research from participants’ speech. A deep learning algorithm is a dense artificial neural network, which is in turn inspired by the way that a biological brain works.

Deep learning encompasses machine learning, where machines learn by experience and develop skills without needing the input of their human masters. From colourising images to facial recognition, deep learning is already contextualising the world around it. Converting brain activity into speech is a huge breakthrough, though ordinary speech translations of one language to another are perhaps the best examples of the technology at work.


Deep learning is already contextualising the world around it. Converting brain activity into speech is a huge breakthrough


Deep learning algorithms are actually rethinking the way that we translate languages. Previously, tools such as Google Translate would have translated every word in a sentence individually, as if looking up each word in a dictionary. These days, however, algorithms invented just two years ago can perform to the level of statistical machine translation systems invented 20 years ago, because they can decode sentences using recurrent neural networks (RNN).

RNNs learn patterns in data and output them as encoded sentences. There’s no need to input the rules about human languages because the RNN learns everything it needs to know. This is how deep-learning can solve sequence-to-sequence challenges such as speech translation, whether that’s from one language to another, or from brainwaves into sounds.

How impressive is this study?

Similarly to how online translators began by simply turning individual words from one language to another, scientists have only been able to use AI to analyse brain activity and translate a syllable at a time.

Many who have lost the ability to speak have used speech-generating devices and software. Naturally spoken speech averages 150 words per minute – up to fifteen times more than devices used by motor-neuron disease sufferers – so giving the participants of this study a more effortless flow of speech is a breakthrough.  

“Technology that translates neural activity into speech would be transformative for people who are unable to communicate as a result of neurological impairments,” said the neuroscientists in the study, published on April 24th in Nature. “Decoding speech from neural activity is challenging because speaking requires very precise and rapid multi-dimensional control of vocal tract articulators.”

An electronic mesh, which consists of a network of flexible circuits placed into the brain, is now being tested on animals. Elon Musk’s Neuralink company is also developing an interface between computers and the biological brains, using neural lace technology, in what the company describes as, “ultra high bandwidth brain-machine interfaces to connect humans and computers”.

Artificial Intelligence is working on other senses

Vision is another sense that will benefit in the future from reading neural output.

A recent study has looked at how machine learning can visualise perceptual content, by analysing human functional magnetic resonance imaging (fMRI). The feature decoding analysis was made with fMRI activity patterns in visual cortex (VC) measured while subjects so much as imagined visual images. Decoded features were then sent to the reconstruction algorithm to generate an image.

Similarly to the speech research, study into deep image reconstruction from human brain activity is suggests that artificial neural networks can provide a new window into the internal contents of the brain.

It’s perhaps getting ahead of ourselves to suggest that mind-reading is imminent, but it’s a certainty that artificial intelligence and deep learning will provide the human race with a neuromechanical biological system of sorts. “These findings advance the clinical viability of using speech neuroprosthetic technology to restore spoken communication,” the study said.

Photo from https://www.nature.com/

Luke Conrad

Technology & Marketing Enthusiast

Why DEIB is Imperative to Tech’s Future

Hadas Almog from AppsFlyer • 17th March 2025

We’ve been seeing Diversity, Equity, Inclusion, and Belonging (DEIB) initiatives being cut time and time again throughout the tech industry. DEIB dedicated roles have been eliminated, employee resource groups have lost funding, and initiatives once considered crucial have been deprioritised in favour of “more immediate business needs.” The justification for these cuts is often the...

The need to eradicate platform dependence

Sue Azari • 10th March 2025

The advertising industry is undergoing a seismic shift. Connected TV (CTV), Retail Media Networks (RMNs), and omnichannel strategies are rapidly redefining how brands engage with consumers. As digital privacy regulations evolve and platform dynamics shift, advertisers must recognise a fundamental truth. You cannot build a sustainable business on borrowed ground. The recent uncertainty surrounding TikTok...

The need to clean data for effective insight

David Sheldrake • 05th March 2025

There is more data today than ever before. In fact, the total amount of data created, captured, copied, and consumed globally has now reached an incredible 149 zettabytes. The growth of the big mountain is not expected to slow down, either, with it expected to reach almost 400 zettabytes within the next three years. Whilst...

What can be done to democratize VDI?

Dennis Damen • 05th March 2025

Virtual Desktop Infrastructure (VDI) offers businesses enhanced security, scalability, and compliance, yet it remains a niche technology. One of the biggest barriers to widespread adoption is a severe talent gap. Many IT professionals lack hands-on VDI experience, as their careers begin with physical machines and increasingly shift toward cloud-based services. This shortage has created a...

Tech and Business Outlook: US Confident, European Sentiment Mixed

Viva Technology • 11th February 2025

The VivaTech Confidence Barometer, now in its second edition, reveals strong confidence among tech executives regarding the impact of emerging technologies on business competitiveness, particularly AI, which is expected to have the most significant impact in the near future. Surveying tech leaders from Europe and North America, 81% recognize their companies as competitive internationally, with...

How smart labels are transforming supply chains

Sharath Muddaiah • 27th January 2025

As e-commerce continues to rise globally, the impact of just-in-time manufacturing and rising consumer expectations mean the need for real-time visibility has never been greater. Smart labels directly address this demand, offering solutions to long-standing challenges like shipment delays, theft, and the lack of traceability. With the smart label market projected to grow from $14.1...